
, ,- 7

Technical Document 1670
April 1990

Linear Algebra On a
0CRAY X-MP00

',-

NN R. F. Freund

Approved for public release; distribution Is unlimited.

90 05 23 048



NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This document was produced by Code 423 of the Naval Ocean Systems Center.

Released by Under authority of
R. E. Pierson, Head J. A. Salzmann, Head
Ashore Command Centers Ashore Command and
Branch Intelligence Centers

Division

JJ



1.0 VECTORIZATION. We will use the CRAY X-MP for analyzing certain aspects of linear algebra computation on
vector supercomputers. Most of the other scientific vector computers are quite similar in architectural design. The main
results apply to a wide variety of vector architectures.

1.1. X-MP ARCHITECTURE. While there are many important special features of a vector supercomputer such as a
CRAY, undoubtedly the most important in making it "super" is its vectorization capablility. Here we will examine some of
the hardware features of vectorization. Later we will look at performance assessment.

1.2 X-MP CONCURRENCY. Vectorization is one of three levels of concurrency (vectorization or parallelism) on a
CRAY X-MP [19881. All three are shown in figure 1.1.

1.2.1. SEPARATE PROCESSORS. First there is the parallelism that comes from having four separate,
independent processors or CPUs (the "4" in X-MP 48 refers to four CPUs, the "8" to the number of megawords of main
memory). Although hardware and software exist to coordinate these CPUs and make them work together on the same task,
most CRAY sites use them as four separate computing machines. Thus, a typical user, using one CPU, sees an average,
sustained performance of between 25 and 30 MFLOPS (.Million Floating-Point Qperations Per Second). This means the
average throughput from an X-MP with four processors is around 110 MFLOPS.

1.2.2. SCALAR AND VECTOR SECTIONS. A second level of parallelism resides within each processor, which
has both a scalar section (further divided into data and address portions) and a vector section. Each section has its own set of
registers for holding operands. Each section also has its own set of functional units to carry out the non floating-point
instuctions of shift, integer add, population count, and logical operations. The units for floating point add, floating point
multiply, and floating point divide are shared by both the vecto: and scalar sections. The scalar and vector sections can also be
independently programmed in assembly language, However, the most common way to use them (as the CRAY FORTRAN
compiler does) is to complement each other on the same task, with the scalar section often preparing data for the vector section
or doing those calculations that cmnot be vectorized.

1.2.3. VECTORIZATION. Tiie third level of concurrency is vectorization itself, a concept that stems historically from
the earlier one of pipelining. Most computational hardware operations take more than one clock cycle. Segmentation is the
hardware division of an operation into distinct, one-cycle substages that can be carried out individually. Pipelining is a method
of using more than one of these segments at once on different operands. If an operation, say a floating-point add, taking six
cycles, is segmented into six separate and independent physical substages, then it is possible to have six adds going on at once,
each one at one of the six stages of completion. With no pipelining there would be only one add operation every six cycles.
In complete pipelining every stage of the computational pipeline would be used with different operands. In the case of the
floating-point add, with six stages, we obtain a sixfold increase in performance, since (after a start-up period) one result is
produced every cycle. In a scalar machine, practical difficulties generally permit only partial pipelining, i.e., not all stages are
used at once. Vectorization is a simple way to carry out complete pipelining, assuming a long enough data vector. On the
CRAY this is done through the use of vector registers, which store a number of operands, as opposed to scalar registers, which
each hold only one. Each CPU of the CRAY has eight vector registers, each with the capacity for 64 operands. There are also
special vector mask and vector length registers, as well as access ports to memory and to the scalar portion of the CPU.

1.3. EXAMPLE. Let us begin our examination of the mechanics of vectorization by looking at a simple example (figure
1.2). Suppose we have two one-dimensional arrays (vectors), A and B, containing floating-point numbers. Suppose further
we wish to add the first 64 values of A to the first 64 values of B and to store the result in
another vector, C. Whether using a scalar or vector machine, we could write the FORTRAN code to do this as.

DO 100 1 = 1, 64
C(J) = A(I) + B(I)

100 CONTINUE

What happens in vector mode is the compiler directs vector registers, say VO and V 1, to be loaded with the first 64 elements of
A and B respectively. After a short delay, the values of VO and VI are pipelined through the floating-point-add functional unit.
The first add takes another six cycles, after which the first result, C(1), is fed into another register, say V2, and the succeeding
63 C values are pipelined into V2 at a rate of one every cycle. The V2 values are then stored in the memory for the vector C.
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Figure 1.2. Vectorization of C(l) = A(I) + B(I).
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1.4. VECTOR OPERATIONS. Vector operations can also use scalar operands. For example, if we wished to
multiply the first 64 elements of a vector A by a scalar B, we would write the FORTRAN as

DO 100 1 = 1, 64
C(I) "-A(I) * B

100 CONTINUE

In this case a vector register is loaded with the first 64 elements of A, and a scalar register with B. The A values are pipelined
through the multiply unit using B as the other multiplicand. The results, C, are fed into some other vector register and then
stored in memory.

Vector operations can be longer than 64, indeed as long as the memory limitations of a particular code will permit.
In this case a technique knoun a- "strip-mining" is used, i.e.. portions of the vectors are taken sequentially. For example
consider the case

DO 100 1 = 1,150
C(I) = A(I) + B(I)

100 CONTINUE

The compiler would generate code to do the first 22 values as one v .ctor operation, the next 64 values, and finally the 6, 4
values. Thus if the number of elements being processed is not an exact multiple of 64, the resulting "remainder" is processed
first.

It is important to realize all types of data used in scalar registers, i.e. ,floating-point, integer, logical, and even
address data, can be used in vector registers. Furthermore, the functional units of the vector portion of the machine enable us
to use any of these types. However, the CFI compiler, because of the great complexity involved, sometimes does not
efficiently use the full capabilities of the hardware for non floating-point data.

A special feature of vector supercomputers such as the CRAY-X/MP is the ability to chain 2 or more vector
operations. By this we mean the results coming out of one vector operation may feed directly as operands into another vector
operation without waiting for the first to complete. Not only computational units, but also vector memory references can
chain also. The basic flow of chaining is shown is figure 1.3 for a SAXPY operation (whose signifficance will be discussed in
the Linear Algebra section).

SAXPY DO 100 I=I,M
Y(I) = Y(I) + A(I)*X

100 CONTINUE

2.0 MEMORY. First we examine some details of the CRAY X-MP vector-memory system in order to discuss
applications later.
2.1. ORGANIZATION. The 223 (=8,388,608), 64-bit words of central memory for a CRAY X-MP are arranged into 64
banks, each of 217 words. These 64 banks are in turn grouped into four sections. Each processor or CPU has its own set of
four lines to memory, one to each of the four sections. Thus the CRAY X-MP/48 has a total of 16 section lines (4 CPUs
with four lines each). The CPUs access the lines through three ports, A and B for vector reads, and C for vector stores (there is
also a fourth I/O port). This is summarized in figure 2,1.

2.2. VECTOR MEMORY REFERENCES The hardware instructions for vector memory references (reads and stores)
each come in three modes. Mode one is for adjacent memory locations, i.e. for stride one references, where stride is the
constant number of words from one vector element to the next consecutive one. Mode two is the generalization to stride n
references. Thus for stride three store, we mean we store our data in memory in every third word from some starting location.
The third mode is a generalization of the second mode to irregular locations in memory. This is called gather for read and
scatter for store. These hardware instructions require a second vector register with the relative addresses in memory from which
to gather or to which to scatter. We could, in FORTRAN, gather into vector Y irregularly located items of vector A (using
index array K) and add them to scalar X by

DO 1001= 1,N
Y(I) = X + A(K(I))

100 CONTINUE
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We could do the analogous scatter by
DO 100I1= 1, N

Y(K(I)) = X + A(I)
100 CONTINUE

Vector memory references generate bona fide vector streams that perform up to 64 operations for each instruction.
These instructions can be chained (linked, overlapped vector streams, as shown below) with vector arithmetic units.
Furthermore, with bidirectional memory enabled, the two vector reads (ports A and B) can be chained with a vector store (port
C). Thus the X-MP is ideally designed for the SAXPY discussed in the previous chapter.

2.3. ACCESS CONFLICTS. With four CPUs using 12 ports and 16 section lines to reference central memory, there
are clearly possibilities for access conflicts! The three basic types of memory access conflicts are Bank Busy, Simultaneous
Bank, and Section Access. The Bank Busy conflict occurs within or between CPUs when a port requests a bank that is already
busy. Referring to figure 2.1, suppose port B of CPU 2 is already reading from bank 4 in section 1. If either port A in CPU
2 or port C in CPU 3 wishes to access that same bank, then we will have a bank busy conflict. Since a bank is closed for a
total of four cycles upon being requested (the initial request cycle plus three more cycles), a Bank Busy conflict will result in a
delay of one, two, or three cycles to the new requesting port. A Simultaneous Bank conflict results when ports of different
CPUs make an initial bank request at the same time. This would occur, for example, if port B in CPU 0 and port C in CPU 2
both wanted bank 17 at the same time. ALI ports are held one cycle by a Simultaneous Bank conflict and a Bank Busy conflict
will immediately follow for a least one of the ports. A Section Access conflict occurs when multiple ports in the same CPU
request banks in the same section. An example of this would be port C in CPU 3 requesting bank 28 and port A in CPU 3
requesting bank 12, since both banks 12 and 28 are in section 3. All ports are held one cycle by Section Access conflicts. The
access conflicts are resolved as follows:

i. Within a CPU, ports with odd stride (including stride one) have precedence over even stride requests and prior
requests have priority over later requests.
ii. Between CPUs, the priority between CPUs is rotated every four cycles.

2.4. VECTOR STRIDE. Next we examine vector stride, where stride is the number of words from one array element to
the next. This is of particular interest because there are separate hardware memory reference instructions to implement unit
strX1 .stride steps of one) and nonunit stride (steps greater than one).

We next need to examine the FORTRAN methods of generating memory array references. To show this, we consider the one-

dimensional array, W, the two-dimensional array X, the three-dimensional array Y, and the five-dimensional array Z, defined by

DIMENSION W(21), X(4,5), Y(3,2,4), Z(4,2,3,4,10)

The elements of W are stored in their natural order, i.e., W(1), W(2), W(3) .... W(21). For the multi-
dimensional arrays X, Y, and Z, the elements are stored in reverse lexicographic fashion, i.e., leftward indices vary more rapidly
than rightward ones. More generally, for an n dimensional array, U, defined in FORTRAN by

DIMENSION U(D1 ,D2 .... Dn)

The relative position, P, of a particular element, U(51,52.  
8 n), is given by

N-1 j-1

P(51,82 . . 5N) = 61 + {(8 j+l - 1) * (rI Dk)} (2.1)
J=l k=1

I hus 43,1,2,3,7) is the 635th element of Z since P(3,1,2,3,7) = 3 + (2-1)'4"2 + (3-1)*4*2*3 + (7-1)*4*2*3*4 = 635.
Unit stride in FORTRAN is illustrated below for both the arrays W (reads) and Y (stores).

DO 100 1 = 1, 10
DO 100J= 1,4
TOTAL = TOTAL + W(I+3)
Y(J,2,1) = COS(J*PI)

100 CONTINUE
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By contrast nonunit stride in FORTRAN is shown below for stride-of-five reads for W, and stride-of-eight stores for Z.

DO 100 I = 1, 20,5
DO 100 J = 1, 3
TOTAL = TOTAL + W(I)
Z(3,1,J,4,7) = SIN(J*PI)

100 CONTINUE

2.4.1. STRIDE CONFLICTS. The performance and memory conflict characteristics of stride can be divided into three
basic categories: unit stride, nonunit odd stride, and nonunit even stride. Here we discuss the simplest and generally best
behaved case, unit stride. The low-order six bits of the absolute memory address specify one of the 64 banks. Therefore unit
stride will access successive banks and will cycle sequentially through all banks before returning to any starting bank. Since
there are no more than 64 elements in a vector register, a unit stride vector reference in a 64 bank CRAY will not access any
bank more than once, and hence will never have a bank conflict with itself. In the case of section line conflicts, unit stride
(and odd stride) have priority over even stride. Furthermore, once unit stride takes a line, it will hold it for up to four cycles,
thus reducing certain cases (linked conflicts) in which a second port of a CPU continually contends with a first for line access.
In all these senses, unit stride avoids or reduces conflicts of the kind often seen for both odd and even nonunit stride.

Now we consider the behavior of different types of stride. Nonunit od stride behaves basically like unit stride, primarily
because odd stride also cycles through all banks. To see this, we observe the number of banks, 64, is a power of two. Hence
any odd number, s, for the stride will be relatively prime to the number of banks. From elementary number theory, this means
the set of bank numbers accessed by unit stride, (k}0<k_ 6 3 , will be the same as those accessed by odd stride, s, i.e., (ks
(mod 64)} 0<k_63. Thus, nonunit odd stride, like unit stride, will cycle through all banks (and section lines) before returning
to a starting bank (or line), though the actual sequence order of accessed banks will be different than for unit stride. The general
conclusion (both within and betwcen CPUs) is Memory conflict characteristics for unit stride and nonunit odd stride are
similar.

2.4.1.1. STRIDE CONFLICT EXAMPLE. This is shown by an experiment for which MFLOPS speeds (averaged
over 100,000 iterations) were computed for stride increments, s = 1, 2 ... , 64 for the code

DO 100 I=1,(64*INCR),INCR
C(I) = (T * A(I)) + B(I)

iGO CON LiNUE

The analogous result with two gathers and a scatter was also computed.

DO 100 1=1,64
C(INDEXI(I)) = (T * A(INDEX2(I))) + B(INDEX3(I))

100 CONTINUE

Define degk(n) = highest power of k in factorization of n, e.g., deg2(7) = 0, deg 2(12) = 2, deg2 (58) = 1, and

deg 3(54) = 3. Next define A, = ( n : deg2 (n) = jj <n < 64), so that A0 is the odd intergers (1, 3, 5 .. 63), A3 = (8, 24,

40, 56), A5 = {32), and A6 = (64). Define Ato refer to the gather/scatter case. Fig. 2.2 shows the results of the
experiment. In fact, if we define nn to be the average megaflops in the experiment above correpsonding to stride classes in

An , then we found the n's to be strictly ordered, i.e., 114.8 = n 0 > n 1 >... > n 6 = 28.2. Thus the results (figure 2.2)
show

i. Unit stride and odd nonunit stride give about the same results and these are the best cases.
ii. Even stride gives poorer performance than odd stride and increasing "degree" of evenness decreases the
performance
iii. Gather/scatter compares with some degree of evenness.

Although exceptions can be found, these results are quite general.
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One important reason for this phenomenon is even stride does not cycle through all the banks as odd stride does.
Since the number of banks is 64, the case of A1 will access only half the banks. In the case of A2 only a quarter, etc. This
means the bank conflicts due to random access from other processors will be magnified because of reduced possibilities, i.e.,
free banks, to avoid conflicts. In addition, cases A3 through A6 will not cycle through all section lines and hence cause an
analogous problem for a processor with itself (if it is doing multiple memory references, as in our example). Also in the cases
of A4 through A6 we expect our processor to have bank conflicts with itself since the bank busy period is four cycles.

Finally we note that A,, results are markedly inferior to A0 , since A, produces random memory accesses which will tend to

conflict with itself. However these are not as bad as A5 or A6 since in those hitter cases we are always guaranteed long bank
busy conflicts.

100

MFLOPS

50 -7

50

I I I I I I I I
8 16 24 32 40 48 56 64

STRIDE CLASSES
Figure 2.2. Stride contention effects on vectorizing of ci = t*a i + bi .

3.0. LINEAR ALGEBRA.
3.1. MATRIX TIMES A VECTOR. Let us examine chaining in a basic linear algebra operation, matrix times a vector.
Let XT = (X(1),X(2) .. X(N)) be a point in N-space and A (A(IJ)) be the M by N matrix mapping X into M-space.

A(1,1), A(1,2),. .. A(1,1) ""M (I

A(2,1), A(2,12, .... A(1,1) X(2) Y(2)

.. .(3.1)

A(M,1), A(M,2), ... A(1,1) X(N) Y(M)

N

where Y(I) = A(I,J) * X(J), 1 1,. . . M.

1=8
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3.2. R AXPY AND SDOT. Algorithmicadly we can think of this in two ways: (a) as N updates to the elements of Y by
suCcessively adding in terms A(I,J)*X(J), commonly called SAXPY, or (b) as M dot products of rows of A with the column
%ecor of X aka SDOT. The FORTRAN for both is below (assuming initialization of Y to 0).

DO 100 J=I,N DO 100 I=I,M
SAXPY DO 100 I=l,M SDOT DO 100 J=I,N

Y(I) = Y(I) + A(I,J)*X(J) Y(I) = Y(I) + A(I,J)*X(J)
100 CONTINUE 100 CONTINUE

Figures 3.1 and 3.2 show timings for the inner loop chains of SAXPY and SDOT. In particular they show the
high degree of concurrent multiplies and adds for both algorithms. In addition vector loads and stores are chained with
airithmCtic operations. Since each chain can only operate on up to 64 elements (the maximum vector length), these chains may
N: repeated, depending on the lengths of M or N. Note neither the load of X(J) for SAXPY nor the store of Y(I) for SDOT are
shown since these are both one-time scalar operations with respect to the iterated inner loops. On a CRAY X-MP, SAXPY i.
faicr for small and mediL m data sizes (M<750) and SDOT for large data sizes (N >750). Using information about the CRAY's
mcniory organization and vector hardware (discussed above) we can deduce the reasons for this. Dongarra et. al. [1984] have
c\plainn-f this only on the basis of memory touches and possible bank conflicts. These are actually, however, usually only
-'e('njarlv factors. Since in the way we have written SDOT above, the inner loop is not on the leftmost FORTRAN variable,
thorn e hce nonunit stride through memory. Section 2 (Memory) above showed that certain (highly even) strides can be quite
bad. lo' ever, most strides, odd or only slightly even, do not cause much degradation in performance. In any case, the results
ArC till tlc samle: SAXPY is better for small and medium data; SDOT for large data.

3.3 PERFORMANCE ANALYSIS. By examining figures 3.1 and 3.2, we see the SDOT chime (.b.ain time) is about
l0 percent shorter than the SAXPY chime, since it does not have the vector store operation that SAXPY uses. How then can
.SANtY 'ver take less time? The reason lies in the one-time, 64-long, scalar summation that has to be done at the end of the
SD)OT. This stems from the difficulty of vector machines to perform reduction operations, i.e., collapse the contents of a
vectfor to a scalar value. What we want to compute in the last line of SDOT above is a vector reduction of the generic type,

scalar, = scalar, + (vector1 ® vector 2 ) where ® denotes component-wise multiplication. However the result
register of a vector operation must generally be another vector register. Thus we must use a calculation of the generic type

vector o = vcctor 0 + (vector 1 ® vector 2 ). This means vector o will hold Y(I), but split up into 64 partial
,,ilulands, i.e., the 4th word of vector 0 contains

YI(I) = A(IJ) * X(J) (3.2)

J-It(mod 64)

\\h1.t 'e walnt to compute is

N 63

Y(I) Y A(I,J) * X(J) = Yv(I) (3.3)

To do this we must perform a scalar sum of the words of vector 0 at the end. For relatively small vectors the
duration of this one-time add can be large compared to the basic SDOT work, in which case the overall SAXPY performance
will be faster. However since this scalar SDOT summation is only one-time, its effect will be relatively insignificant for
larger vectors and SDOT will then be the faster.

4.0. CONCLUSION. Memory contention can have severe effects on the perfomance of vector machines. These effects
can be minimized by insuring that memory references have as small a power of 2 as possible in the stride size. SDOT is
asymptotically more efficient than SAXPY, however the inability of vector machines to fully implement SDOT makes
SAXPY better for small and medium lengths.
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